

WHİTE PAPER

BITCHAIN (BTC)

A Decentralized Oracle Network

13 Ağustos 2023

Abstract
Smart contracts are poised to revolutionize many industries by replacing
the need for both traditional legal agreements and centrally automated

digital agreements. Both performance verification and execution rely on
manual actions from one of the contracting parties, or an automated

system that programmatically retrieves and updates relevant changes.

Unfortunately, because of their underlying consensus protocols, the
blockchains on which smart contracts run cannot support native

communication with external systems.Today, the solution to this problem
is to introduce a new functionality, called an oracle, that provides

connectivity to the outside world.

Existing oracles are centralized services. Any smart contract using such
services has a single point of failure, making it no more secure than a

traditional, centrally run digital agreement.In this paper we present
Bitchain, a decentralized oracle network. We describe the on-chain

components that Bitchain provides for contracts to gain external
connectivity, and the software powering the nodes of the network. We

present both a simple on-chain contract data aggregation system, and a
more efficient off-chain consensus mechanism. We also describe

supporting reputation and security monitoring services for Bitchain that

help users make informed provider selections and achieve robust service
even under aggressively adversarial conditions. Finally, we characterize

the properties of an ideal oracle as guidance for our security strategy, and
lay out possible future improvements,including richly featured oracle

programming, data-source infrastructure modifications, and confidential
smart-contract execution

Contents

1 Introduction

2 Architectural Overview
2.1 On-Chain Architecture
2.2 Off-Chain Architecture

3 Oracle Security

4 Bitchain Decentralization Approach 11
4.1 Distributing sources

4.2 Distributing oracles

5 Bitchai Security Services

5.1 Validation System
5.2 Reputation System

5.3 Certification Service
5.4 Contract-Upgrade Service

5.5 Bitchain token usage

6 Long-Term Technical Strategy
6.1 Confidentiality

6.2 Infrastructure changes
6.3 Off-chain computation

7 Existing Oracle Solutions 26

8 Conclusion

A Off-Chain Aggregation
A.1 OCA protocol

A.2 Proof sketches
A.3 Discussion

B SGX Trust Assumptions

1 Introduction
Smart contracts are applications that execute on decentralized

infrastructure, such as a blockchain. They are tamperproof, in the sense
that no party (even their creator) can alter their code or interfere with

their execution. Historically, contracts embodied in code have run in a
centralized manner that leaves them subject to alteration, termination,

and even deletion by a privileged party
In contrast, smart contracts’ execution guarantees, which bind all parties

to an agreement as written,create a new and powerful type of trust

relationship that does not rely on trust in any one party. Because they are
self-verifying and self-executing (i.e., tamperproof as explained above),

smart contracts thus offer a superior vehicle for realizing and

administering digital agreements.
The powerful new trust model that smart contracts embody, though,

introduces a new technical challenge: connectivity. The vast majority of

interesting smart contract applications rely on data about the real world
that comes from key resources,specifically data feeds and APIs, that are

external to the blockchain. Because of the mechanics of the consensus
mechanisms underpinning blockchains, a blockchain cannot directly fetch

such critical data.We propose a solution to the smart contract connectivity
problem in the form ofBitchain, a secure oracle network. What

differentiates Bitchain solutions is its ability to operate as a fully
decentralized network. This decentralized approach limits the trust in any

single party, enabling the tamperproof quality valued in smart contracts to
be extended to the end-to-end operation between smart contracts and the

APIs they rely on. Making smart contracts externally aware, meaning
capable of interacting with off-chain resources, is necessary if they are

going to replace the digital agreements in use today.Today, the lion’s
share of traditional contractual agreements that have been digitally

automated use external data to prove contractual performance, and

require data outputs to be pushed to external systems. When smart
contracts replace these older contractual mechanisms, they will require

high-assurance versions of the same types smart contracts and their data
requirements include:

• Securities smart contracts such as bonds, interest rate derivatives, and
many others will require access to APIs reporting market prices and

market reference data, e.g. interest rates.The main use of smart contracts
in Binance Smart Chaintoday is management of tokens, which are a

common functionality in most smart contract networks. We believe that
the current focus on tokens to the exclusion of many other possible

applications is due to a lack of adequate oracle services, a situation
Bitchain specifically aims to remedy.

• Insurance smart contracts will need data feeds about IoT data related to
the insurable event in question, e.g.: was the warehouse’s magnetic door

locked at the time of breach, was the company’s firewall online, or did the
flight you had insurance for arrive on time.

• Trade finance smart contracts will need GPS data about shipments, data
from supply chain ERP systems, and customs data about the goods being
shipped in order to confirm fulfillment of contractual obligations.Another

problem common to these examples is the inability for smart contracts to
output data into off-chain systems. Such output often takes the form of a

payment
message routed to traditional centralized infrastructure in which users

already have accounts, e.g., for bank payments, PayPal, and other
payment networks. Bitchain’s ability to securely push data to APIs and

various legacy systems on behalf of a smart contract permits the creation
of externally-aware tamperproof contracts.

Whitepaper roadmap

In this whitepaper*, we review the Bitchain architecture (Section 2). We

then explain how we define security for oracles (Section 3). We describe
the Bitchain approach to decentralization / distribution of oracles and data

sources (Section 4),and follow with a discussion of the four security
services proposed by Bitchain,as well as the role played by BTC tokens

(Section 5). We then describe a proposed long-term development
strategy, which includes better confidentiality protections, the use of

trusted hardware, infrastructure changes, and general oracle
programmability (Section 6). We briefly review alternative oracle designs

(Section 7), and conclude with a short discussion of the design principles
and philosophy guiding Bitchain

development (Section 8).

2 Architectural Overview

Bitchain’s core functional objective is to bridge two environments: on-

chain and offchain. We describe the architecture of each Bitchain
component below. Bitchain will initially be built on Ethereum [16], [35],

but we intend for it to support all leading smart contract networks for both
off-chain and cross-chain interactions. In both its on and off-chain

versions, Bitchain has been designed with modularity in mind.Every piece
of the Bitchain system is upgradable, so that different components can be

replaced as better techniques and competing implementations arise.

2.1 On-Chain Architecture

As an oracle service, Bitchain nodes return replies to data requests or

queries made by or on behalf of a user contract, which we refer to as
requesting contracts and denote by USER-SC. Bitchain’s on-chain interface

to requesting contracts is itself an on-chain contract that we denote by

BITCHAIN-SC.Behind BITCHAİN-SC, Bitchain has an on-chain component
consisting of three main contracts: a reputation contract, an order-

matching contract, and an aggregating contract. The reputation contract

keeps track of oracle-service-provider performance metrics. The order-

matching smart contract takes a proposed service level agreement,logs
the SLA parameters, and collects bids from oracle providers. It then

selects bids using the reputation contract and finalizes the oracle SLA. The
aggregating contract

collects the oracle providers’ responses and calculates the final collective
result of the Bitchain query. It also feeds oracle provider metrics back into

the reputation contract. Bitchain contracts are designed in a modular
manner, allowing for them to be configured or replaced by users as

needed. The on-chain work flow has three
steps: 1) oracle selection, 2) data reporting, 3) result aggregation.

Oracle Selection An oracle services purchaser specifies requirements
that make up a service level agreement

(SLA) proposal. The SLA proposal includes details such asquery

parameters and the number of oracles needed by the purchaser.
Additionally,the purchaser specifies the reputation and aggregating

contracts to be used for the rest of the agreement.
Using the reputation maintained on-chain, along with a more robust set of

data gathered from logs of past contracts, purchasers can manually sort,
filter, and select oracles via off-chain listing services. Our intention is for

Bitchain to maintain one such listing service, collecting all Bitchain-related
logs and verifying the binaries of listed oracle contracts. We further detail

the listing service and reputation systems in Section 5. The data used to
generate listings will be pulled from the blockchain,allowing for alternative

oracle-listing services to be built. Purchasers will submit SLA proposals to
oracles off-chain, and come to agreement before finalizing the SLA on-

chain.Manual matching is not possible for all situations. For example, a
contract may need to request oracle services dynamically in response to

its load. Automated solutions solve this problem and enhance usability.

For these reasons, automated oracle matching is also being proposed by
Bitchain through the use of order-matching contracts.Once the purchaser

has specified their SLA proposal, instead of contacting the oracles directly,
they will submit the SLA to an order-matching contract. The submission of

the proposal to the order-matching contract triggers a log that oracle
providers can

monitor and filter based on their capabilities and service objectives.
Bitchain nodes then choose whether to bid on the proposal or not, with

the contract only accepting bids from nodes that meet the SLA’s
requirements. When an oracle service provider bids on a contract, they

commit to it, specifically by attaching the penalty amount that would be
lost due to their misbehavior, as defined in the SLA.Bids are accepted for

the entirety of the bidding window. Once the SLA has received enough

qualified bids and the bidding window has ended, the requested number of
oracles is selected from the pool of bids. Penalty payments that were

offered during the bidding process are returned to oracles who were not

selected, and a finalized SLA record is created. When the finalized SLA is

recorded it triggers a log notifying the selected oracles. The oracles then
perform the assignment detailed

by the SLA.

Data Reporting Once the new oracle record has been created, the off-
chain oracles execute the agreement and report back on-chain. For more

detail about off-chain interactions, see Sections 2.2 and 4.

Result Aggregation Once the oracles have revealed their results to the
oracle contract, their results will be fed to the aggregating contract. The

aggregating contract tallies the collective results and calculates a

weighted answer. The validity of each oracle response is then reported to
the reputation contract. Finally, the weighted answer is returned to the

specified contract function in USER-SC.Detecting outlying or incorrect

values is a problem that is specific to each type of data feed and
application. For instance, detecting and rejecting outlying answers before

averaging may be necessary for numeric data but not boolean. For this
reason,there will not be a specific aggregating contract, but a configurable

contract address which is specified by the purchaser. Bitchain will include
a standard set of aggregating contracts, but customized contracts may

also be specified, provided they conform to the standard calculation
interface.

2.2 Off-Chain Architecture

Off-chain, Bitchain initially consists of a network of oracle nodes connected
to the Ethereum network, and we intend for it to support all leading smart

contract networks. These nodes independently harvest responses to off-
chain requests. As we explain below, their individual responses are

aggregated via one of several possible

consensus mechanisms into a global response that is returned to a
requesting contract USER-SC. The Bitchain nodes are powered by the

standard open source core implementation which handles standard
blockchain interactions, scheduling, and connecting with common external

resources. Node operators may choose to add software

extensions, known as external adapters, that allow the operators to offer
additional specialized off-chain services. Bitchain nodes have already been

deployed alongside both public blockchains and private networks in
enterprise settings; enabling the

nodes to run in a decentralized manner is the motivation for the Bitchain
network.

Bitchain Core. The core node software is responsible for interfacing with

the blockchain, scheduling, and balancing work across its various external

services. Work
done by Bitchain nodes is formatted as assignments. Each assignment is a

set of smaller job specifcations, known as subtasks, which are processed

as a pipeline. Each subtask has a specific operation it performs, before

passing its result onto the next
subtask, and ultimately reaching a final result. Bitchain’s node software

comes with a few subtasks built in, including HTTP requests, JSON
parsing, and conversion to various blockchain formats.

External Adapters. Beyond the built-in subtask types, custom subtasks

can be defined by creating adapters. Adapters are external services with a
minimal REST API. By modeling adapters in a service-oriented manner,

programs in any programming language can be easily implemented simply
by adding a small intermediate API in front of the program. Similarly,

interacting with complicated multi-step APIs can be simplified to individual

subtasks with parameters.

Subtask Schemas. We anticipate that many adapters will be open

sourced, so that services can be audited and run by various community
members. With many different types of adapters being developed by

many different developers, ensuring compatibility between adapters is
essential.Bitchain currently operates with a schema system based on

JSON Schema [36],to specify what inputs each adapter needs and how
they should be formatted. Similarly, adapters specify an output schema to

describe the format of each subtask’soutput.

3 Oracle Security

In order to explain Bitchain’s security architecture, we must first explain
why security is important—and what it means.

Why must oracles be secure? Returning to our simple examples in
Section 1,if a smart contract security gets a false data feed, it may payout

the incorrect party,if smart contract insurance data feeds can be tampered

with by the insured party

Figure 1: Bitchain workflow: 1) USER-SC makes an on-chain request; 2) BITCHAIN-SC logs an

event for the oracles; 3) Bitchain core picks up the event and routes the assignment to an

adapter; 4) Bitchain adapter performs a request to an external API; 5) Bitchain adapter

processes the response and passes it back to the core; 6) Bitchain core reports

the data to BITCHAIN-SC; 7) BITCHAIN-SC aggregates responses and passes them back as a

single response to USER-SC.

there may be insurance fraud, and if GPS data given to a trade finance contract can be

modified after it leaves the data provider, payment can be released for goods that haven’t

arrived.

More generally, a well-functioning blockchain, with its ledger or bulletin-board abstraction,

offers very strong security properties. Users rely on the blockchain as a functionality that

correctly validates transactions and prevents data from being altered. They treat it in effect

like a trusted third party (a concept we discuss at length below). A supporting oracle service

must offer a level of security commensurate with that of the blockchain it supports. An

oracle too must therefore serve users as

an effective trusted third party, providing correct and timely responses with very high

probability. The security of any system is only as strong as its weakest BTC, so a highly

trustworthy oracle is required to preserve the trustworthiness of a wellengineered

blockchain.

Defining oracle security: An ideal view. In order to reason about oracle security, we must

first define it. An instructive, principled way to reason about oracle security stems from the

following thought experiment. Imagine that a trusted third party (TTP)—an ideal entity or

functionality that always carries out instructions

faithfully to the letter—were tasked with running an oracle. We’ll denote this oracle by

ORACLE (using all caps in general to denote an entity fully trusted by users), and suppose

that the TTP obtains data from a perfectly trustworthy data source Src.

Given this magical service ORACLE, what instructions would we ask it to carry out? To

achieve the property of integrity, also referred to as the authenticity property [24], we

would simply ask that ORACLE perform the following steps:

One notable application of Apsis is On-chain Oracles which provides end-
to-end verifiability to access external data.

There are two critical differences between off-chain Oracles and on-chain

Oracles:

Oracle nodes are no longer required in on-chain Oracles since on-chain

Oracles can access HTTP API directly. This might imply significant
operational cost since no middleman tax is paid to Oracle nodes;

Data from HTTP API to Oracle contract is completely verifiable in on-chain
Oracles. This means the data consumers only need to trust the HTTP API

providers, in contrast to off-chain Oracles where data consumers need to
trust the Oracle nodes to operate honestly.

The presence of on-chain Oracle does not preclude the existence of third-
party Oracle providers. Existing Oracle providers can build their Oracle

solutions on Apsis which read data from multiple HTTP APIs and aggregate
data points. There are several benefits to build on-chain Oracle solutions

on Apsis:

On-chain Oracles on Apsis provide end-to-end data verifiability. Oracle

data consumers don’t have to trust the Oracle providers as the whole data

generation process is visible on-chain;Oracle providers don’t have to

manage their Oracle node networks and overpay them with their own
tokens. Instead, Oracle providers can better utilize their token to

bootstrap the ecosystem;On-chain Oracles can support both realtime and

cached data access. Oracle data consumers can pay more to trigger a new
round of data update in order to read the latest data, or pay a small

portion to access the data cached in the last round update.On-chain
Oracles can also be accessed by applications on other blockchains via

cross-chain bridge. For example, lending protocols on Ethereum can utilize
the Apsis-Ethereum bridge to read the latest price from the on-chain

Oracles on Apsis. Apsis chain can become an Oracle hub in the incoming
multi-chain era.

Apsis can also empower hybrid blockchain applications to take full

advantage of both Web 2.0 and 3.0. For example, an electronics retailer
can build a sales DApp to sell their televisions and use their existing

systems to provide price and inventory information. The whole purchase
can be implemented in a single transaction which is not feasible on any

existing blockchains.

